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This paper  presents a  numerical method for solving in time the l inearized drib-kinetic equa-  
tion in toroidal geometry,  in the local approximation; collisions are represented using a  
Lorentz model  for pitch-angle diffusion. This method is applicable to computer  simulations of 
dissipative trapped-electron modes  in tokamaks, including the effects of magnet ic curvature 
and  gradient drifts. The  accuracy, convergence,  and  numerical stability of the method are 
analyzed, and  the results of computat ions verifying these analyses are given. 

I. INTRODU~~~N 

The non-uniformity of the magnetic field along the lines of force in toroidal con- 
finement devices, such as tokamaks, is responsible for particle trapping and 
associated low-frequency instabilities [ 1, 21, which have been the object of recent 
theoretical studies because of their expected effect on plasma density fluctuations [ 3  1. 
We  present in this paper a computer simulation method for trapped-electron modes, 
based on numerical solution of the drift-kinetic equation in toroidal geometry. 

Before entering into the discussion of these numerical solutions, a  brief review of 
physical concepts related to trapped-electron modes is given to introduce the nota- 
tions and to define the physical scope of the simulations. Trapped particles occur in 
toroidal devices because the magnetic field intensity along a given line of force has 
minima, Bmin, at 0  = 0 and maxima, B,,,, at B = X, where 0 denotes the poloidal 
angle (Fig. la), Bmi,,/B,,,,, N 1 - 2s, and E = r/R, < 1 is the flux surface inverse 
aspect ratio. Particles at 0  = 0 with pitch angle a satisfying the relation 
lcos al < (2&y’* are reflected before reaching a field maximum at 0 = rc. Such 
particles are in this way trapped in the outer region of the toroidal flux surface and 
oscillate about 6’ = 0 with a “bounce” frequence wi, = yvc”‘/r, where v is the speed of 
the particle (Fig. lb) and y is the angle of the magnetic field B with respect to the 4 
direction (Fig. lc). Particles with (cos a( > (2~)“’ have sufficiently large parallel 
velocities to pass through the field maxima at 8  = 71 and therefore circulate, or transit, 
around the torus. 
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(c) 

FIG. 1. Geometric relations defining trapped-particle motion in toroidal plasmas. 

In analytical treatments of trapped-electron modes, dispersion relations are usually 
derived by considering trapped and transiting electrons as separate species. The 
response of transiting (i.e., untrapped) electrons to a low-frequency electric potential 
(o is found approximately from the Boltzmann relation, which gives their density 
perturbation 6ny N N,ep/T,, where N,, and T, are the electron density and 
temperature and -e is the electron charge. Trapped electrons, however, are 
constrained and therefore cannot reach this equilibrium density. Their distribution 
function is evaluated by integrating their kinetic equation along unperturbed trapped 
orbits, and then averaging the resulting density perturbation over a bounce period 
[l-3]. 

Electron-ion collisions play an important role in trapped-electron modes in that 
they can scatter electrons out of the trapped-particle region; they are often introduced 
in analytical treatments by using a Krook collision operator of the form (aflat),,,, = 
-rer[f-f” exp(g/Te)] which is applied only to trapped particles. Here, f” denotes 
the Maxwellian distribution and v,~ = V/E is an “effective” collision frequency, ac- 
counting for the rate of pitch-angle scattering of electrons out of the trapped-particle 
region. For Coulomb scattering, the collision frequency v,r is also inversely propor- 
tional to v3, 

The general problem of trapped-particle modes is three-dimensional, involving the 
poloidal and toroidal angles, B and <, respectively, on a given flux surface, and the 
minor radius r of the flux surface. These modes may, however, be studied in the 
“local approximation” in which the wave vector k is assumed parallel to a flux sur- 
face of minor radius r, and the radial dependence enters only through the density and 
temperature gradients defined by the parameters L;’ = - (dN,,/dr)/N, and 
rl = (NolT,)(dT,ldr)l(dNo/dr). 

The numerical solutions considered in this paper are linearized and are done in the 
local approximation, but they go beyond analytical treatments of the problem in the 
following important aspects: 
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(1) No a priori distinction is made between trapped and transiting electrons. The 
behavior of trapped electrons, including curvature and gradient drifts, follows from 
the solution of the drift-kinetic equation and does not involve the introduction of ap- 
proximate bounce-averaged unperturbed orbits. Thus, for example, the motions of 
marginally trapped electrons having long bounce periods of the order of the wave 
period are taken into account. 

(2) Collisions are included in terms of a Lorentz model (aflat),,,, = 
@ /sin W/a a >( sin a aJ/&) instead of the Krook model. The Lorentz model ac- 
curately accounts for pitch-angle scattering of both trapped and transiting particles, 
without having to introduce an effective collision frequency which assumes that the 
trapped particles’ pitch-angle distribution remains constant with time. 

(3) The electric potential is computed from Poisson’s equation, instead of assum- 
ing charge neutrality. This introduces the Debye length, I,, into the computations 
and causes the appearance of high-frequency oscillations at the frequency 
w,, = w, k,ik as the system seeks to establish charge neutrality. Here o, = u,/& is the 
plasma frequency, v, = (Te/m,)“2 is the electron thermal velocity and k,, is the wave 
vector component parallel to B. 

In the local approximation, the drift-kinetic equation involves four dimensions, in 
addition to time: two spatial variables, the poloidal and toroidal angles 0 and i 
(Fig. la), and two velocity variables, the electron speed 2, and pitch angle a (Fig. lb). 
As in the case of the Vlasov equation, the drift-kinetic equation may be solved 
numerically either directly, or after transformation with respect to some of these 
variables. Here, Fourier transforms are taken with respect to 19 and 6, but the solution 
is carried out directly with respect to v and a, or to be exact, with respect to v and 
u = cos a. Since the solutions are linearized, and the equilibrium distribution function 
is independent of c, only a single toroidal mode need be considered, thus effectively 
reducing the dimensionality from 4 to 3. On the other hand, the e-dependence of the 
magnetic field results in electron trapping and this appears in the electrons’ transfor- 
med drift-kinetic equation as poloidal mode coupling; thus several poloidal modes 
need to be considered simultaneously. However, we show in this paper that the num- 
ber of these poloidal modes required to recover trapping effects is small, varying from 
three to nine, depending on the trapping phenomenon being considered, Using the 
velocity variables v and u directly allows an accurate representation of resonant par 
title effects. 

The equations forming the basis of the present simulation method are given in 
Section II. The algorithm to advance the potential and the electron distribution 
function is presented in Section III. Here, a form of split time-step algorithm is 
introduced: the distribution function is advanced in a collisionless manner during the 
first half time-step, which requires an iteration process, and the Lorentz collision term 
is applied in the second half time-step. This method has certain advantages in both 
simplicity and accuracy as discussed in part (1) of Section IV. In these solutions. 
both low- and high-frequency oscillations occur simultaneously. Although the low- 
frequency oscillations are of primary physical interest, it is the high-frequency 
oscillations which dominate the convergence and numerical stability of the solution. 
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After gaining some experience with the computations, it was recognized that the 
numerical stability depends in this case on the parity of the number of iterations. This 
question is analyzed in parts (2) and (3) of Section IV, where the growth rate of the 
numerical instability is derived. The several examples of this algorithm and its 
stability tests presented in Section V include: (1) unperturbed trapped-electron 
behavior; (2) drift wave simulations, showing resonant damping and growth; (3) 
examples of high-frequency oscillations relating to the numerical stability of this 
simulation approach; and (4) a series of simulations of the curvature and gradient 
drift resonance instability to establish the number of poloidal modes required to 
obtain accurate results in the simulation of trapped-electron modes. In the Appendix, 
we show that, with the ion model used here, the approximation of charge neutrality 
would not eliminate the troublesome high-frequency oscillations and in fact would 
have the opposite effect, making their frequency even higher. 

II. BASIC EQUATIONS 

The magnetic field geometry of a toroidal tokamak device is approximated by us- 
ing a curvilinear coordinate system, x = (r, r3, [), which is defined by a nested set of 
toroidal flux surfaces of major radius R,, having circular cross sections with minor 
radii r, as shown in Fig. la. Drift waves in this device are analyzed here in the local 
approximation, where the wave vector k is restricted to lie in a chosen flux surface 
and the wave electric field is expressed as E = - (ao,lae)(d/r) - (ao/a<)([/R), where 
o is the electron potential, 0 and c are the poloidal and toroidal angles, respectively, 
and R = R,( 1 + E cos 0). 

Electrons are described using their distribution function F(v, a, x, t), averaged over 
Larmor phase /I and dependent on velocity through the electron speed, v, and pitch 
angle, a, defined in Fig. lb. This distribution function evolves in time according to 
the drift-kinetic equation [4]. In the solutions considered here, the drift-kinetic equa- 
tion is linearized by setting F =feq tf; wherefeq denotes the equilibrium distribution 
function, and f is the perturbation associated with the waves. 

The equilibrium distribution function is [5, 61 

where 

f”=No ($&-)3”exp(-$), 
e 

0, = eB/m,c is the electron cyclotron frequency, m, is the electron mass and c is the 
speed of light. 

The perturbation distribution function is represented through its Fourier transform 
with respect to the poloidal and toroidal angles, defined by 
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and the Fourier transform (P,,,+, of the potential is defined in similar manner. After 
linearization and Fourier transformation, the electron drift-kinetic equation yields 
I5,61 

4~- 1 +9’-3) (m-k,,)fO$9,+, 
[ 1 

+i ~2g-um+,+l -fit+,-1) 

-ifi-p+(m+l+ l>(fm+~+l--fo~,+,+,) 

+ (m + l- l)(fm+m-1 -fO%I+r-Al9 (1) 

where vD = Te/meQneLn is the electron diamagnetic drift velocity. As indicated 
earlier, mode coupling occurs only between the poloidal modes; therefore a spectrum 
of poloidal modes with a central mode m and several satellites defined by 
1 = 0, f l,..., fl,,, must be considered. On the other hand a single toroidal mode, n, is 
sufficient. In Eq. (l), all quantities have been normalized with lengths measured in 
units of r/y (distance travelled by electrons per radian around the minor axis), 
velocities in units of the electron thermal velocity u,, times in units of r/yve, potential 
in units of T,/e and density in units of No. Also defined here are u = cos a and 
pe = v,/R,, mean (thermal) electron gyroradius. 

A derivation of Eq. (1) which assumes E < 1, y < 1 and pJr < 1 is presented 
elsewhere [6], but its terms may be identified as follows. The first term in the right 
member is the collision term, chosen according to the Lorentz model, which gives a 
collisional diffusion in pitch angle a. The collision frequency defined by 
v = V,(2/( 1 + v*))3’*, is a function of energy approaching the up 3 dependence of the 
Coulomb cross section for large v. This energy dependence plays an important role in 
the dissipative trapped-electron instability. The second term accounts for streaming 
parallel to the magnetic field, where k,, = m + n&/y ( 1, is the wave vector component 
parallel to B, corresponding to the central mode (m, n). The third term accounts for 
electric field effects related to the radial density and temperature gradients. The fourth 
term, which accounts for trapping of electrons due to magnetic field inhomogeneity, 
introduces coupling between adjacent poloidal modes. The last term, which also in- 
volves mode coupling, represents the effect of curvature and gradient drifts. This term 
is responsible for a resonance which destabilizes trapped-electron modes in the low- 
collisionality regime [7]. 
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Assuming cold ions and a wave frequency LC) < Gi, where Qi is the ion gyrofre- 
quency, the ion velocity reduces to the electric drift velocity and the ion continuity 
equation gives 3Ni,+,/3t v -(imv,/y)cp,+,, where Nim+, is the ion density of 
poloidal mode m + 1. The corresponding expression for 8N, m+ ,/at is obtained by in- 
tegrating Eq. (1) with respect to velocity. Substituting these expressions into the time 
derivatives of the Poisson equation yields [S, 61 

& Ill+/ ikllyvD iy2 -- -- dt + m2J; %I+!=% I (ki, + O(u >m t, 

-;((v,)mtw -(v,l)m+l-1) 

where (v,,), = 27~ J” uv3fm du du, pm = & J‘ (1 + u’) v4f,,, du dv and Lr, denotes the 
Debye length, measured in units of r/y. 

III. ALGORITHM 

From the preceding formulation, the drift-kinetic equation, Eq. (l), can be used as 
the “updater” for the spectral components, f,, ,, of the electron distribution. 
Similarly, the Poisson equation, Eq. (2), can be used as the updater for the wave 
potentials, ~1, + I, after the velocity integrals, (v,,), + , and pm+ I, have been computed. 
These equations form a system of coupled equations, whose numerical solution is to 
be generated. 

Each spectral component, fm+,. with I= 0, fl,..., rtlmax, is represented over a dis- 
crete grid in speed and pitch angle (vj, uk), as shown in Fig. 2, where uj =j Au and 
uk = k Au with j = O,...,j,,, and Au = u,,,lj,,,; similarly k = 0, f l,..., *km,, and 
Au = l/k,,, . The derivatives with respect to u are computed by finite differences, 

~f/W,,- [f(Uk+,)-f(Uk~1)1/2Au, 
@tPh,, = If ht ,) - 2f@A +f(Uk-,)l/AU=, 

and the integrals over u and u are computed using Simpson’s rule. At the boundaries 
u = f 1, the second-order derivative d2f/8u2 does not enter in Eq. (1) and the Iirst- 
order derivative, which enters in the collision term, is computed by the non-centered 
differences af/W,=,, = ~If+kmax-ff~kman~l~ ]/Au. These boundary derivatives are 
computed as centered derivatives by introducing two columns of guard points 
corresponding to k = i(k,,, + 1) and defining f + ck,,,, + , , = 2f * k,,,, -f + ck,,.,, ,). 
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V 

FIG. 2. Grid for representation of electron distribution in speed I: = 10. c,,,I and pitch-angle 
u=cosa=I-l.ti]withguardpointsshownatu=~(ltdu). 

Consider the right side of Eq. (1) as being composed of a collisional diffusion 
term, denoted as D, plus a streaming term -iuu(k, + I)f,,,, ,, plus the remaining 
terms. denoted as C. The time derivative in Eqs. (1) and (2) are replaced with finite 
differences and the finite time step is made implicit by replacing f, + , and v~+, on the 
right sides with averages between their new values (at time t f dt) denoted with 
primes, and their known present values (at time t) denoted as unprimed. Once in this 
form, Eq. (1) can be solved for the quantity f k+, as it appears in the derivative and 
streaming term: 

fin+,= (1 + iuv(k,, + I) At/I- ’ 
I 

(1 -- iutl(k, + I) At/2)f,+, 

+q(C+D)+;~(C’+D’) . 
i (3) 

A similar expression is obtained from Eq. (2) for the potentials rp; + ,. 
In the first algorithm considered for these simulations, all the right-side terms of 

Eq. (3) are used to advance f,,,,, in a single iterated time step as shown schematically 
in Fig. 3a. The iterations are carried out on the terms C’ + D’ in Eq. (3) and on the 
corresponding terms in the equation for &+,. 

The difficulty with this first algorithm is that the time step size At is limited by the 
collision frequency and the interval Au. Convergence problems arise whenever 
v At/Au* 2 1. This limitation could be overcome by moving the term D’ to the left 
side of Eq. (3) and solving the resulting tridiagonal matrix at each iteration. However. 
the tridiagonal matrix would comprise complex elements and would not permit 
vectorization of the code. 

These complications are avoided by implementing a second algorithm using a split 
time step as shown schematically in Fig. 3b. Here the iterated first half-step is 
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(b) 

Fw. 3. The two iterated time-stepping schemes: (a) single step; (b) split step, with tridiagonal diffu- 
sion matrix outside of iteration loop. 

collisionless, solving Eq. (3) with D = D’ = 0 to obviate the above mentioned limit on 
At. The second half-step applies a pure diffusion operator 

D’At aAt 
f6,r,=, (4) 

for the collisions, which is solved exactly by inverting what is now a real tridiagonal 
matrix. With the diffusion term removed from the iteration loop, the first half-step 
can now be vectorized. 

This split-step algorithm is not only significantly more efficient to run, the analysis 
given in Section IV will show that in the case v + o, its accuracy is also superior to 
that of the single-step algorithm. 

IV. ACCURACY,CONVERGENCE, AND STABILWY 

In the present algorithm, the Poisson equation (actually, its time derivative Eq. (2)) 
is used to compute the wave fields: no charge neutrality condition is imposed. With 
electrons flowing parallel to B in response to electric fields having a wave vector 
component k,, parallel to B, electron oscillations occur at the frequency o,, = w,k,,/k, 
where o, = v&n is the electron plasma frequency and k is the wave vector 
magnitude. This high-frequency oscillation is superimposed over the low-frequency 
drift wave at frequency w* = klvD, where k, is the wave vector component perpen- 
dicular to B. Although the drift wave is of primary interest in the present computa- 
tions, it is the high-frequency oscillations which cause the time-step limitations 
(related to accuracy, convergence, and numerical stability questions) which will be 
considered in this section. 

To analyze the high-frequency behavior of the code, we can neglect terms related 
to diamagnetic drift and trapping by setting v. = 0, p,/r = 0, and E = 0, and consider 
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a single poloidal mode (there is no electron trapping when E = 0 and therefore no 
mode coupling occurs). It will also be sufficient for our purposes in this section to 
consider a monoenergetic distribution, f” = 6(u - 1)/4n, so that f,, , reduces to a 
function of u and t only, and Eqs. (1) and (2) reduce to 

+g[(l -d)g] -iM lk,(f-lo), 
%  . y2k, +I z=%g -, I US 4 

where the subscripts m + 1 have been omitted from f and cp, and k, = k,, + 1 is the 
parallel wave vector component of the mode considered. 

To obtain an analytical solution of Eqs. (5) and (6), the pitch-angle depende,nce of 
f is expanded as f = cj Fjqi(u), where P,(u) denotes the Legendre polynomial of 
order j, and the F,(t) are the associated time-dependent coefficients. After truncating 
the expansion for j > 2, Eqs. (5) and (6) yield 

PO = - (ik,/3) F, , (7) 

@ , = - ik,(F, - q) - 2vF,, (8) 

$=i $$ (q) = i 2 F, , 
D I 

(9) 

where (u,,) = + I’: uf du and w,, = ykJ3 ‘/‘rnA, for this monoenergetic case. Assum- 
ing a time dependence of the form exp( - iot), these equations yield the dispersion 
relation 

co2 + 2ivw - 0: = 0, (10) 

where wi = wi + kf/3. Solving Eq. (10) for complex frequency w, it follows that the 
fields oscillate at the frequency /I = Re(o) = (wi - v’)“’ and are collisionally dam- 
ped at the rate r= Im(w) = -v. Because of the truncation of the Legendre 
polynomials for j > 2, we do not recover Landau damping in the present analysis. 

We now compare these values of /3 and r with the values obtained from the tinite- 
difference solutions to Eqs. (7) through (9) using first the single-step and later the 
split-step algorithms. 

1. Accuracy of Single-step Algorithm 

Denoting new quantities (at time t +dt) with primed variables and old quantities 
(at time t) with unprimed variables, Eqs. (7) through (9) yield in this case (see 
Fig. 3a), 

FL - F, = - ik, At(F; + F,)/6, (11) 

F; - F, = - ik, At(Fo + F, - qf - y1)/2 - v At(F; + F,), (12) 

:, cp’ - (D = i w$L (F; + F,). 
I 

(13) 
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Assuming complete convergence of the iteration and a time dependence of the form 
exp(--iwt) yields the dispersion relation 

z2+2ivz-wW,:=O, (14) 

which is identical to Eq. (lo), except that for w we now have z, where 

(15) 

Solving Eqs. (14) and (15) for /I, = Re(w) and T’, = Im(w) and comparing with the 
earlier values of /I and r yields the relative frequency and growth rate errors, 

P, -P co; - 4v2 -=- 
B 12 

At2 - @’ - v2)2 At4 + O(Af) 
120 3 

l-,--r - 3w; + 4v2 At* _ (0; - v2)2 - = ___-- 
r 12 24 

At4 + O(At6). 

(16) 

(17) 

2. Accuracy of Split-Step Algorithm 

In this algorithm, the collision term is outside the iteration loop and solved 
separately, as shown in Fig. 3b. Denoting the intermediate value of F, with a tilde, 
and noting that collisional diffusion does not affect rp, Eq. (12) should be replaced by 

P, -F, = -ik, At(Fb + F, - (D’ - (p)/2, (18) 
F; -P, = -v At(F; + &)/2. (19) 

Again assuming complete convergence, Eqs. (1 1), (13), (18), and (19) yield 

z2 + 2vi( 1 + ~0’ At2/4) z - 0: = 0. (20) 

Solving Eqs. (20) and (15) for p2 = Re(o) and r2 = Im(o) yields the relative fre- 
quency and growth rate errors for this algorithm: 

P2-P d&l2 _ (0; - v2)* -=- 
P 120 

At4 + O(Af), (21) 

r,-r v2 --=- 
r 3 

At2 _ _5(d - v212 
48 

At4 + O(Af). (22) 

Since w,, 9 v, the split-step algorithm is seen to give a significantly more accurate 
collisional damping rate and only a slightly less accurate oscillation frequency than 
the single-step algorithm. 
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3. Convergence of Iteration 
The convergence condition for the iterated first half-step in the split-step algorithm 

is found by writing Eqs. (1 l), (13), and (18) after q - 1 iterations, to examine the qth 
iteration: 

Fz - F, = -ik, At(fl + F,)/6, (23) 
Fy - F, = -ik, At(Fz + F;, - pqp ’ - q1)/2, (24) 

pq--yl=igJ(q+F,). 
I 

Solving Eqs. (23) and (24) for q and substituting the result into Eq. (25) yields 

q-1 
cpq = l/Y - tqd- = I#/ c (-#)9’ + (qj’)Q (& 

(25) 

q,=o 

where v consists of terms which do not vary during the iteration and 6 = (w, Af/2) 
(1 + k; At*/12)-I’* N w,, At/2 for k, At < 1. It follows from Eq. (26) that a necessary 
condition on At for the iteration to converge is that 6 < 1. 

4. Numerical Stability 
The computations are carried out with a specified number, Q, of iterations at 

each time-step and the error due to incomplete convergence can be expressed from 
Eq. (26) as 

AQE~~Q+‘-~Q=~(-~*)Q+’ p-F,-i-A--F 
k,At 1 ’ ’ (27) 

Writing Eqs. (23) through (25) for the Qth iteration (q = Q) with pov -’ = rpQ - Av ‘; 
setting the new values Fh, F;, and (4’ equal to fl, c, and rpQ; and assuming a time 
dependence of the form exp(-iwt) yield the dispersion relation 

= - d-f? [ 1 _ (479 - (-g2)Q ( &;), (28) 

where r = exp(-io At). For o At < 1, r = 1 - iw At and Eq. (28) yields the growth 
rate 

~Q=-eY. 
At (29) 

Thus for an even number of iterations (e.g., Q  = 2 or 4), incomplete convergence 
leads to damping, while for an odd number of iterations (e.g., Q  = 3), incomplete con- 
vergence gives a numerical instability that can easily dominate the simulation results. 
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V. EXAMPLES 

The code implementing the present algorithm has been used extensively in com- 
puter studies of the dissipative trapped-electron instability and of curvature and 
gradient drift effects on trapped-electron modes; these results are presented elsewhere 
[6]. The computations presented next are instead chosen to answer questions of 
numerical convergence and accuracy. 

1. Trapping of Unperturbed Electrons 

A primary concern in the present simulations is the number of poloidal sidebands, 
1 max, required on each side of the central mode to resolve trapping phenomena ade- 
quately. This question is first examined here by considering unperturbed electron mo- 
tions; magnetic curvature and gradient drifts are neglected. In this case, there is no 
wave, Eq. (2) drops out, and the distribution function is obtained from Eq. (1) with 
(D = 0, m = 0, k,, = 0, and p,/r = 0. In order to observe trapping oscillations without 
the phase-mixing effects due to the energy dependence of the bounce frequency, a 
monoenergetic initial distribution function with v = 1 is chosen. This initial distribu- 
tion function is independent of the poloidal angle 0 but is given a pitch-angle depen- 
dence of the form 1 - cos cz, from which fiEO = (1 - U) 6(v - 1)/4x and fit,, = 0 at 
t = 0. 

The time dependence of the mean parallel velocity (u,,),, is shown in Fig. 4 for 
E =0.2, v= 2 x 10m4, and I,,,= 1,4, and 10. These computations were carried out 
with du = l/29, At = 0.05, and Q = 2 iterations. Note that (u,,),, = -l/3 at t = 0, as a 
result of the initial 1 - u dependence of the distribution function, and that for t > 0 it 
proceeds to oscillate with a period ~24. The theoretical expression for the bounce 

FIG. 4. Averaged electron parallel velocity, (u,,(t)), shows trapping oscillations at the bounce fre- 
quency ob = E “‘2-I” in normalized time units, with E = 0.2. More poloidal sidebands than I,,, = 4 
does not impove resolution of trapping effects on (vi,). Effect of collisions (v = 0.0002) causes \(u$\ to 
decay. 



TRAPPED-PARTICLE MODES IN TOKAMAKS 163 

frequency, in normalized units, is [5] wb = &“*u/2 3’4 This gives in the present case a . 
trapping period t, = 27r/w,, = 23.63, which agrees closely with the results of Fig. 4. 
For l,,, = 1, i.e., using only three poloidal modes, the trapping oscillations persist, 
but when a larger number of modes is retained, 1,,, = 4 and 10, the oscillations damp 
rapidly after the first period. This damping is caused by phase mixing resulting from 
the dependence of bounce frequency on the amplitude of the trapping oscillations. 
These results are similar to results reported earlier [5 ] except that now collisional 
pitch-angle diffusion has been included, causing the value of (u,,),,, when averaged 
over several trapping periods, to decay slowly in time. For I,,, = 1, the rate of decay 
is very close to the collision frequency v = 2 x 10-4, while for 1,,, = 4 and 10, 
somewhat larger decay rates are apparent. 

The pitch-angle dependence of the distribution function fO, averaged over 0, is 
shown in Fig. 5 for the three cases lmax = 1,4, and 10. At t = 15, which corresponds 
approximately to a half trapping period, a large variation from the initial distribution 
occurs in the region Iu 1 5 0.45, which corresponds to trapped electrons. At t = 25, 
which corresponds to a complete trapping period, the curves have returned close to 
their initial shapes. Contour plots of f(8, u) at t = 25 are also given in Fig. 5. For 
I max = 4 and 10, these plots clearly show the trapping region in the form of a vortex. 

These computations show that, while trapping effects are indeed recovered using 

-I 0 +I -I 0 +I -I 0 +I 
u= cm a 

FIG. 5. Pitch-angle distribution averaged over poloidal angle 8, for same runs as in Fig. 4. Top row: 
Initially (f= 0) and after roughly + bounce period (t = 15) to show greatest departure from initial 
shape. Middle row: After almost one bounce period (t = 25) the averaged distribution has returned 
almost to initial condition. Lower row: Contour plots in (u, /3) plane clearly show trapping region for 
1 max = 4 and 10. 
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only I,,, = 1, the resolution of the fine structure of the distribution function resulting 
from trapping oscillations requires a larger number of modes. Since this line structure 
is smeared out by collisional diffusion, the number of modes required depends on the 
collision frequency. For the case considered here (E = 0.2, v = 2 x 10P4) values of 
1 max between 4 and 10 appear sufficient. 

2. Drift Waves 
The accuracy of the algorithm to represent drift wave oscillations is examined by 

setting E = 0 to exclude trapping effects. In this case no coupling occurs between 
poloidal modes and we may set 1,,, = 0. Three simulations were done with 
un = 2 x 10e4, 2, = 2 x 10P3, q = 1, m = 10, y = 0.1, k,, = 0.1, and constant collision 
frequencies, v= 10m3, lo-* and 2 X 10e2. Th ese computations were carried out with 
Au = l/14, At = 0.1, and Q = 2 iterations. A Maxwellian distribution function was 
considered with v,,, = 4 and Au = l/14. 

The resulting simulation potential is plotted as a function of time in Fig. 6 for the 
three cases. The high-frequency oscillations are evident in these plots. For this case, 
the expected high-frequency jI = k,,y/ml, = 0.5, gives a period 271/p = 12.6, which is 
close to the period observed (12.2) in Fig. 6. The high-frequency oscillations have an 
amplitude modulation, which is the result of beating between two high-frequencies 
having a difference of the order of the drift frequency (c)* . Collisions cause a damping 

FIG. 6. Simulation results for real part of electric potential (Pi, using a Maxwellian distribution. 
Trapping effects have been dropped (E = 0). Both low-frequency drift wave and high-frequency oscilla- 
tions arc evident. 
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FIG. 7. Electric potentials for same runs as in Fig. 6, after filtering out high frequency. The dashed 
lines indicate the predicted collisionless Landau damping rate for this case (7 = I). 

of the high-frequency oscillations at the rate I-= -P, which gives decay by a factor 
l/e N 0.37 in times 1000, 100, and 50, respectively, for the three cases considered. 
This damping is difftcult to measure accurately on the plots of Fig. 6, because of the 
beating of the high-frequency oscillations, but the trend toward increased damping 
with increasing collision frequency is evident. 

Low-frequency oscillations related to the drift wave are also observed in Fig. 6, but 
are more clearly displayed in Fig. 7, where the potential has been averaged over the 
high-frequency period and is now plotted on a logarithmic scale. For this case, the 
theoretical drift frequency o* = mu& = 2 x lo-’ must be modified by a small 
correction [5], 60 = -w,(m&,/y)2, due to finite A,. Thus the expected drift wave 
frequency is w = 1.92 x 10P2, corresponding to a period 2n/w = 327, which is very 
close to the periodicity (320) observed in Fig. 7. With q = 1, the drift wave is also 
affected by Landau damping at the theoretical rate rL = -0.0023, which is indicated 
by the broken lines in Fig. 7. For v = 10e3 and 10P2, the drift wave follows the 
Landau damping rate closely; thus collisions are observed to affect the low-frequency 
damping rate significantly only for v 2 2 X 10m2 = w* . 

The low-collision case, v= 10P3, shows an irregularity in amplitude near t = 1500. 
This irregularity becomes stronger in the collisionless case (v = 0) and is thought to 
be a recurrence phenomenon related to the discrete representation of the distribution 
function in u and U. Note that, for a monoenergetic distribution the recurrence time 
[ 8 1, due to the discrete representation of parallel velocities with separation 
dvi = v Au, is r, = 27c/(k,,Av,,) = 880/v (here ki, = 0.1 and Au = l/14). For the 
Maxwellian distribution considered here, the recurrence times for different energies 
are different. This results in a smearing of the recurrence, and this effect is indeed 
reduced when a finer mesh in the representation of the distribution function in u and 
t’ is used. Since the code is normally used with collision frequencies v 2 10-3, this 
recurrence effect does not seem to be an important limitation. 

3. Numerical Stability 
Several computations were done to verify the high-frequency numerical stability 

results of Section IV-4. In these computations, we set E = 0, v = 0, and uD = 0 to 
eliminate trapping and collisional effects and low-frequency oscillations. A single 



166 CRYSTAL AND DENAVIT 

t 

FIG. 8. High-frequency, finite-iteration instabilities for two, three, and four iterations per time-step. 

mode is considered (1,,, = 0) with m = 10, y = 0.1, A,, = 2 x 10-3, du = l/14 and a 
monoenergetic distribution f0 = a(v - 1)/4x is used. 

For the case shown in Fig. 8, k,, = 1. and At = 0.2. The analysis of Section IV gives 
w,, = 2.89 and 6 = 0.2888. With Q = 2, 3, and 4 iterations every time-step, the 
theoretical growth rates are, respectively, r, = -0.0347 (stable), r3 = 0.0029 
(unstable), and r,, = -0.00024 (stable). These results agree closely with the computa- 
tion results of Fig. 8. Here damping is observed for Q = 2, with a measured growth 
rate of -0.038; growth is observed for Q = 3, with a measured growth rate of 0.003; 
and no measurable growth or damping occurs for Q = 4. Other computations with a 
variety of values of k,,, At, and Q confirm these results. For example, for other 
simulations having kll = 2 and At = 0.1, the theoretical growth rates are r, = -0.069, 
r, = 0.0058, and r., = -0.00048, while the corresponding measured values are 
-0.067, 0.0054, and -0.00058. 

4. Accuracy Tests 
To consider the code’s numerical accuracy in finding the physical growth rate of a 

trapped-electron instability, a series of simulations was done involving curvature and 
gradient drift resonance. The physical parameters chosen for these runs are 
vn = 2 x 10-4, m = 10, y = 0.1 (so that w* = 0.02), &, = 2 x 10e3, q = 1, k,,= 0.1, 
v = 10P3, and p,/r = 7 x 10P4. A Maxwellian electron distribution was used with a 
velocity space grid having urnax = 4, Au = l/14, and Au = l/14. The numerical 
parameters that were varied in these runs were time-step size At, iteration number Q, 
and the number of poloidal modes I,,, on each side of the central (rational) mode. 
The normalized drift wave growth rates, T/w,, obtained from these simulations, are 
presented in Table I to illustrate the effects of these numerical parameters on ac- 
curacy of the simulations. 

According to the analysis of Section IV, simuations using an odd number of itera- 
tions should exhibit a high-frequency numerical instability due to incomplete con- 
vergence. Since the highest poloidal mode (1= Z,,X) involves the highest frequency 
(CL+, = (k,, + I) r/m&), the largest and earliest high-frequency growth should appear 
there. As simulation time elapses, these high frequencies should couple due to trapp- 
ing, downward to the other poloidal modes until the simulation yields growing 
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TABLE I 

Observed Normalized Growth Rate T/w, of low-requency drift wave potentials” 

I = 4 4 10 max 1 1 1 
At= 0.1 0.125 0.15 0.025 0.05 0.02 

__~ 
Q=2 0.255 NI NI 0.155 0.155 0.148 
Q=3 NI (0.255) NI NI NI (0.155) NI NI 
Q=4 0.255 0.255 0.255 0.155 0.155 0.148 

’ Growth is due to curvature and gradient drift resonances [7]. For the same I,,,, rates are consistent 
with each other whenever high-frequency numerical instability (NI) is not present. Choosing I,,, greater 
than 4 does not significantly improve accuracy of results. 

(numerical instability) high frequencies alone and the drift-wave results (physical in- 
stability) are lost. 

Table I shows that while such numerical instability (NI) behavior is indeed obser- 
ved in all the Q = 3 runs, the drift-wave growth rates are nevertheless retrievable in a 
few cases as indicated. In the At = 0.1 case (I,,, = 1), the drift wave actually grows 
at a faster rate (T/o, = 0.255) than does the high frequency 
(r,=,(r = 1)/o, = 0.216) and is therefore unaffected by the numerical instability. In 
the At = 0.025 case (I,,,,, = 4), even though r&I= 4)/w, = 0.57 is larger than the 
drift wave’s growth rate, the time it takes for this growing high frequency to couple 
down from I = l,,,,x = 4 to the central mode (I = 0) is long enough that a good 
measurement of the physical growth rate is possible before the low-frequency drift 
wave is finally overtaken by the high-frequency numerical instability. 

Such high-frequency instabilities are seen to be quenched as predicted earlier by us- 
ing an even number of iterations Q = 4. The Q = 2 numerical instabilities indicated in 
Table I are not high frequency: they appear simultaneously in all modes instead of 
first at I,,, and then coupling down to other modes. Using Q > 4 iterations for the 
same parameters effectively quenches this instability too and suggests therefore that 
these represent a convergence problem. 

Two more important conclusions are to be drawn from Table I. First, when 
numerically stable drift-wave results are obtained from the simulation code, they 
show no dependence on simulation parameters At and Q. Second, while having only 
one poloidal sideband (I,,, = 1) is apparently sufficient to recover the presence of the 
curvature drift resonance instability, an accurate computation of this instability’s 
growth rate requires better resolution of the trapped electron motions and therefore 
must involve I,,, 2 4. 

VI. CONCLUSIONS 

In the numerical algorithm presented in this paper for solving the drift-kinetic 
equation in toroidal geometry, Fourier transforms with respect to the poloidal and 
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toroidal angles were used, and a split timestep was introduced in which the collisio- 
nless and collisional parts of the drift-kinetic equation are calculated separately. The 
analytical developments and numerical tests of Section IV and V have shown several 
important properties of this algorithm. 

(1) The split time-step was shown to be both simpler and more accurate than a 
single step, as long as r < o,,, where P is the collision frequency and w,, is the high 
electron oscillation frequency. This condition is always satisfied in simulations of 
drift and trapped-electron modes. 

(2) The time-step At is limited by the high frequency w,,, and must satisfy the 
necessary condition 6 = w,, At/2 < 1 for convergence of the iteration. The solution is 
numerically stable when an even number of iterations, Q, is used and is unstable 
when Q is odd, with growth rates given by Eq. (29). 

(3) Numerical tests show that resonant particle effects giving Landau damping 
(or excitation) of drift waves are correctly represented, and that recurrence problems 
related to discrete representations of velocity space with finite intervals Au, Au are not 
serious for collision frequencies v 2 r,, where rL is the Landau damping (or 
excitation) rate. 

(4) The number of poloidal modes necessary to represent electron trapping and 
associated trapped-electron modes depends on the required accuracy and on the 
collision frequency. The basic trapped-electron effects are obtained with three modes 
only (Lx = 1) and numerical test shows that for vX lo-*w, (wt, is the bounce 
frequency) the poloidal Fourier expansion converges satisfactorily with nine modes 
Lx = 4). 

This algorithm is applicable to linearized computer simulations of trapped-electron 
modes in tokamaks in the local approximation. The algorithm deals primarily with 
the electrons; the ions have been treated here only in terms of their electric drift 
(w* < fii). More complete ion models, including ion Landau damping (or excitation) 
and finite gyroradius corrections could readily be introduced in the algorithm. A 
generalization to nonlinear solutions would involve toroidal mode coupling and 
therefore would require additionally considering a set (n f 1) of toroidal modes. For a 
limited number of toroidal and poloidal modes (e.g., live to nine modes of each type) 
such a generalization appears to be feasible. 

Finally, a generalization to non-local simulations would of course be of 
considerable interest for examining radial eigenmodes and shear stabilization of 
trapped-electron modes. This requires the introduction of a radial grid and the 
computing times of -8 min CRAY - 1 in the present code would be approximately 
multiplied by the number of radial grid points. To make some progress in non-local 
computations, a non-local code has recently been written using Eq. (1) for the 
electrons and including gyrokinetic ions (i.e., including finite ion gyroradius 
corrections), but operating in the frequency rather than in the time domain. This non- 
local code will soon allow us to examine shear stabilization of trapped-electron 
modes and to estimate the number of radial grid points which would be required by a 
large-scale time-domain simulation code. 
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APPENDIX: APPLICATION OF THE CHARGE NEUTRALITY CONDITION 

The Poisson equation is used in the algorithm presented in this paper to compute 
the potential. As we have seen in Section IV, this yields oscillations at the frequency 
cu,, = k y/m;lo. An alternate method would seem to be the application of the charge 
neutrality condition, which would eliminate the need to introduce the Debye length 
into the problem. However, we show in this Appendix that, in the present case, this 
approach would not eliminate high-frequency oscillations, but would on the contrary 
introduce non-physical oscillations at an even higher frequency’. 

The charge neutrality condition may be derived from Eq. (2) by setting 1, = 0; 

(Al) 

Setting E = 0 to exclude trapping effects, expanding the distribution function in 
Legendre polynomials in the manner of Section IV, and assuming I = 0, r7 = 0, and 
v = 0, Eq. (1) yields 

6-1 

$, = -ik, (F,, - p) 643) 

and Eq. (Al) gives 

‘P=&F I’ 644) 
D 

This set of equation yields the dispersion relation 

co (3w+z] +(m-2k,)k,,=O. 

For VA < yk,Jl2m this reduces to o = -k,,y/3vD. In the example considered in part 
(3) of Section V but using k,, = 0.1 and un = 2 X 10m4, we find w = -16.7. This is a 
factor of 58 larger than the high frequency (w,, = 0.29) obtained with I,, = 2 x 10 ‘. 

’ This high frequency disappears when the ion model includes inertia. 
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